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A stochastic simulation method is proposed which allows efficient treatment of the Boltzmann equa-
tion. Interesting quantities (e.g., the time evolution of electron energy, the electron energy distribution
function, and the electron velocity distribution function) are evaluated with the help of a stochastic
simulation, which generates realizations of the underlying stochastic process, referred to as the dynamic
Monte Carlo simulation (DMCS) method. The DMCS technique proposed here does not require
knowledge of the cumulative free-flight distribution, in contrast to both the direct simulation Monte
Carlo (DSMC) and the more efficient “null collision” Monte Carlo method. A helium discharge was
used as an application for the DMCS technique. Transport properties as well as the electron energy dis-
tribution function and the electron velocity distribution function for homogeneous dc and rf cases are

presented.

PACS number(s): 52.20.Fs, 34.10.+x, 52.25.—b

I. INTRODUCTION

Knowledge of the electron energy distribution function
(EEDF) in gas discharges is of crucial importance in pre-
dicting electron-transport properties and electron-impact
reaction kinetics. The EEDF permits us to determine
essential parameters, such as ionization rates, mean elec-
tron energy, etc., from a given set of collision cross sec-
tions. In the literature one may read that the nonequi-
librium characteristics of electron transport can be treat-
ed by either Boltzmann equation solvers or Monte Carlo
simulations. Both approaches are employed to give the
characteristics of an electron swarm under certain condi-
tions. However, Monte Carlo simulations are usually not
conceived as Boltzmann equation solvers. This study will
show that the Monte Carlo technique developed here
emanates from the Boltzmann equation.

Electron statistics are predicted either statistically, em-
ploying Monte Carlo techniques to handle collisions
(particles-in-cell-Monte Carlo collision simulations [1]),
or numerically (“convective schemes” [2]), using tech-
niques that are capable of resolving the EEDF as a func-
tion of space and time.

Finite difference methods (FDMs) and finite element
methods (FEMs) have also been employed to solve the
Boltzmann equation. The electron energy distribution
function is usually expanded into spherical harmonics
and it is approximated by a finite number of terms [3-6)].
The most popular two-term expansion [4] of the EEDF is
limited to (a) a relatively small electric field to neutral
species density ratio E /N to ensure small perturbations
to the isotropic part of the EEDF and (b) rf frequencies
less than the momentum exchange frequencies. Time
modulation of the quantities of interest can be provided
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by solving for the time-dependent EEDF until a steady
state is reached [6]. For explicit FDM or FEM schemes
the most severe restriction is the Courant-Friedrichs-
Lewy (CFL) criterion for the time step. The CFL cri-
terion dictates a time step small enough to ensure that no
particle can cross more than one mesh per time step.
Even when implicit schemes are invoked (relaxing the
CFL constraint) the computational efficiency is lost when
collisions are accounted for, rendering the matrices dense
or banded with large bandwidths.

All electron-impact-associated processes within the
electron Monte Carlo simulation (EMCS) are implanted
either by using the direct simulation Monte Carlo
(DSMC) method or the comparatively more efficient
“null collision” Monte Carlo (NCMC) method proposed
by Skullerud [7]. Both schemes require the inclusion of
the free-flight-time cumulative distribution P(7fF) as an
input. The major drawback of the DSMC method is the
fact that only certain functional dependences of the cross
sections can be treated efficiently, in the sense that 7 can
easily be solved with respect to free flight time 7F*. The
NCMC method introduces the concept of the null col-
lision cross section, which has no physical significance
[8], but allows the straightforward calculation of 7FF, due
to the specially selected functional form of 7.

Sommerer and Kushner [9] have divided the electron
energy range of interest into energy intervals, each one of
which is assigned a null collision cross section so that the
total collision frequency v,,, is constant over the corre-
sponding energy interval. This collective handling of the
electrons relieves the EMCS of computationally expen-
sive floating point operations and it is evident that the
efficiency of the scheme is dependent on the proportion of
null collision events. Both the DSMC and the NCMC
methods introduce a dilemma in the way to handle the
energy crossing of inelastic thresholds either by an energy
increase or decrease within the free-flight regime, since
such occurrences modify 7 upon which the free-flight
time 7FF is based. Neutral Monte Carlo simulations do
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not impose such ambiguity, since between collisions there
is no gain or loss in kinetic energy to affect the collision
cross section.

Hunter [10], performing an EMCS in molecular hydro-
gen, divided the time between collisions into 1-100 inter-
vals to account for the large differences in the mean col-
lision time before and after a mean free path has been
traversed. A comparative study by Reid [11] showed
that, even though the NCMC method introduces a dum-
my collision event (null collision), no significant impact
on the results obtained was observed when compared to
the more physically reasonable DSMC scheme.

Once the free-flight time is established, at the end of
the interval the type of the collision event that takes
place must be determined. Usually it is assumed that the
probability of a process occurring is proportional to its
cross section normalized by the total cross section. Sub-
sequently all relative cross sections are summed up to
unity and a random number uniformly distributed in [0,1]
decides the nature of the collision event [9-21].

The present paper proposes a Monte Carlo simulation
that is dictated by the Boltzmann equation itself. The
procedure that we introduce here is referred to as the dy-
namic Monte Carlo simulation (DMCS) technique. The
advantage is that, contrary to other Monte Carlo
schemes, the DMCS does not require knowledge of the
cumulative free-flight distribution to decide the free-flight
time after which the simulated particle inevitably suffers
a collision (null or real). The DMCS technique requires
only a set of collision cross sections that describe the un-
derlying stochastic process. The free-flight-time interval
is not input as a stochastic process, in contrast to the
DSMC and the NCMC methods. In fact, the cumulative
free-flight distribution is a result of the DMCS.

ot

DIMITRIS P. LYMBEROPOULOS AND JAY D. SCHIEBER 50

II. DESCRIPTION OF THE MODEL

The goal of this paper is to develop a technique that
will allow efficient treatment of the electron-neutral-
species (e-n) interactions, based on a stochastic process
that is described by the Boltzmann equation. The main
features of the plasmas considered are a low ionization
degree (n,/N <1075, where n, is the electron density
and N is the gas density), and an electron temperature,
T,, higher than the background gas temperature. The
technique employed, for the stochastic interpretation of
the Boltzmann equation, is referred to as the dynamic
Monte Carlo simulation.

A. Derivation of the algorithm

The motion of the electrons in the swarm is assumed to
be affected by externally applied electric and magnetic
fields and by collisions of the electrons with the particles
in the ambient gas. These external forces and collisions
cause time-dependent changes in the electron velocity
distribution function, which can be described by the
Boltzmann equation [22-24]
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where f is the electron velocity distribution function, r is
the spatial location, u is the electron velocity, F is the
externally applied force field F=e (E+uXB), where E is
the external electric field, B is the magnetic field, e is the
electric charge, and m is the electron mass. The right-
hand side of Eq. (1) is referred to as the collision integral
and is written as [25]
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where the velocities of the electron distribution function
f are expressed in spherical coordinates for simplicity, ('
is the solid angle (dQ'=sind'd¥'de¢’),u =(uf+uy2
+u2)!’? is the electron speed, o; is the collision cross
section for a collision of type i between an electron and a
particle of type j, and 8 is a Dirac delta function, includ-
ed in the definition of the transition rate to ensure the
conservation of both energy and momentum. Electron-
electron collisions are not considered to be significant at
low ionization levels (n, /N <107°). Hence f ; does not
represent the EEDF. The angles <+ and ¢ represent the
polar and azimuthal angles in the spherical coordinate
system, respectively. The collision cross section depends
on both the magnitude of the relative velocities of the in-
teracting particles and the scattering angle Y,

(u—u;) (u'—uj)

-1 . (3)

X:= cos

lu_ujl lu'—uf|

Equation (3) actually has nine independent variables, de-
pending on the integral in which it appears. The function
X depends on u, u’, and u;- in the first integral and on u,
u’, and u; in the second. The fourth vector appearing in
Eq. (3) is given in terms of the other three vectors such
that momentum is conserved (mu’'+m ju}=mu+m LI
where m and m; are the mass of the electron and the col-
lision partner, respectively).

The first term of the collision integral Eq. (2) describes
the repopulation of the six-dimensional phase-space
volume drdu d¥dg, whereas the second term describes
the depopulation of the volume drdu dddg. Transi-
tions between phase locations can occur, provided that
the Dirac § functions are satisfied.

We have used shorthand notation for the electron ve-
locity distribution function, which we interpret as a con-
ditional probability density normalized to the electron
number defined as
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:=Prob{that a given electron has a position between r and r+dr ,

speed between u and u +du, polar angle of velocity between ¢ and 3+dd,

and azimuthal angle of velocity between ¢ and ¢+d¢ at time ¢ ,

given that it had position ry, speed u, polar angle &, ,and azimuthal angle @, at time ¢y} XN, . 4)

The symbol := means “is defined as” and N, is the total
number of electrons. The interpretation of f as a condi-
tional probability is consistent with the fact that the
Boltzmann equation describes a Markovian process, as
can be verified by its satisfaction of the Chapman-
Kolmogorov equation. The local electron density n,(r) is
given by

ne(r)=ffff(r,u,8,¢)du dddy . (5)
Analogous relations hold for f;(r,u;) (integrated over
du;).

Alternatively, the collision integral Eq. (2) can be writ-
ten in the form reminiscent of a master equation as

[at(r,u,ﬁ,g
at
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where the transition rate W;; is defined as
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The transition rate W; has a straightforward stochastic
interpretation. Roughly speaking, Eq. (7) represents the
probability with which an electron that suffers a collision
with particle j abruptly changes its velocity from u’ to u.
The master equation (6) is used to develop an algorithm
for the stochastic trajectory of an electron that generates
realizations of the underlying stochastic process.

Now we assume that the velocity of the collision
partner is small compared to the velocity of the electron.
This allows us to make the scattering cross section a
function of u and u’ only and not of the velocities of par-
ticle j. In fact, the scattering angle y is just the angle be-
tween the pre- and post-collision electron velocity vectors
and g;; corresponds to the electron energy loss when it
suffers an elastic collision i (e.g., excitation and ioniza-
tion) associated with particle j.

When Eqg. (2) is inserted into the Boltzmann equation
[Eq. (1)], and Eq. (1) is integrated over u} and u; we ob-
tain

= 2 2 f f[nja,-j(u',x)u’S(u —g e, XNf(nu', &, @' ) —njo;(u,x)udlu’'—g'(u,e, X)) f (r,u,8,@) ldu’d"
J ]

where n; represents the particle density of the collision
partner.

In order to integrate the first term on the right-hand
side of Eq. (8) over du’ we must specify the form of the
Dirac § function, which as already mentioned is the re-
sult of conservation of both momentum and energy and
can be written as [23]

172
2y ] .
m

where m; is the mass of the collision partner (m <<m;).
The quantity g is the speed of the electron after the col-
lision. The second term on the right-hand side of Eq. (8)
is independent of the dummy variable u’, hence the in-

glu',e;,x):= [u’2 [1—-2—m(l— cosy)
m;

(8)

[

tegration is straightforward.

For a straightforward integration of Eq. (8) over du’,
we performed a transformation of variables on the Dirac
8 function, which results in

% |

1
o | 8@ weyx)—u),  (10)

8(u—g(u',e;,x))=

where g'(u,€,;, X) represents the electron speed before the
collision and has a form similar to that of Eq. (10) [22]
(replace m with —m). For simplicity, in the remainder
of the derivation g and g’ will not be presented as func-
tions of all their arguments but only of ¥’ and u, respec-
tively. By inserting Eq. (10) into Eq. (8) and then per-
forming the integration over du’ we obtain
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|
where the integration over the angles is to be performed 1o+ (12)
in the spherical coordinate system, where the z axis of the r(ty+At)=r(ty)+ f u(t)dt
velocity points in the direction of u (thus 3=¢=0,
¥#'=Y, and @' represents the azimuthal angle in the new
coordinate system). =r1(ty)+ulzy)Atr .

We may develop a stochastic algorithm from Eq. (11)
by integrating it over ¢ from t; to z,+At, to obtain a
discretized stochastic trajectory of a single electron. The
left-hand side of Eq. (8) is a straightforward Liouville
equation and describes the flight of the electron between
collisions. Thus, during the time step At, the electron
moves deterministically under the influence of the electric
field

_ 1 t0+At
u(zo+An=ulte) +— fto F(1)dt

to)

zu(to)

’

f(r,u,o,o;t0+At lro,uo,ﬂo,¢o;t0)

However, during the small time interval, there is a proba-
bility that the electron collides with a gas particle, which
causes an abrupt change in the velocity of the electron.
For the moment we ignore the deterministic part of the
Boltzmann equation and integrate both sides of Eq. (11)
over t from t, to ty+At. We also expand the electron
probability density function in a Taylor series in the vari-
able ¢t about ¢, and perform the integration over t, keep-
ing terms only to order At:

= f(r,u,0,0;t,|1,ug, I @03 to) ll —Ar Y nju027rf0"a,~j(u0,x)sinx dy
Lj

+Atzn,g(u>f ACPCACIBY) [9&(“—

f(r,g" (u),x, @ Irg, g, 30, @o)dx de’ . (13)

u'=g'(u)

However, by definition of the conditional probability, we may write
F(r,u,3,@;t0|10, 10,0 oito) =81 —10)8(u —uy)8(F—3)8(¢— )N, . (14)

When Eq. (14) is inserted into Eq. (13), we obtain
N f(1,u,0,0;t0+ At rg, u g, o, @03 to)

—8(1' r0)5(u—u0)5(00)8((po)

og(u)
du’

l—AtEn u021rf o ;(ug, x)siny dx

o(g'(u)—ugy) . (15)

+8(r—rp)At 3 n;0,;(g"(u),3p)g (u)
ij

w'=g'(u)

The Dirac 8 function 8(g’(u)—u,) represents the condition that both momentum and energy should be conserved when
a collision event occurs. This & function is the term that allows us to predict the speed of an electron after it has
suffered a collision. For the purpose of writing Eq. (15) in terms of probability functions we make use of the relation
Eq. (10). Hence Eq. (15) can then be written as

N7 Uf(r,u,0,05t0+ At 1o, u g, 3, Pos o) =T —1)8(u —1ug)8(34)8(p) [ 1 2 G(ug) ]

+8(r— 1'0)2 PPl (ulug)P, -j(ﬂoluo)‘P"’(qu), (16)

f
defined respectively by the formulas

Po(ug):=Atn; u021rf 0(ug,x )siny'dy’ , 17)

where ?5, P}, PY;, and P? correspond to the collision
probability, the conditional probability for the electron
speed, the scattering angle probability, and the azimuthal

angle probability, respectively. Each probability is Pl (ulug):=8(u —g (ug,ex)) , (18)
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7-’{5()(|u0):=a,-j(uo,x)sinx/foﬂa,-j(uo,)(')sinx’dx' ,
(19)

=1
PAPr=>— . (20)

For simplicity, the scattering and azimuthal angles 4,
and @, will be represented as y and ¢, respectively, in the
remainder of the paper.

Equation (16) suggests a numerical stochastic algo-
rithm for forward integration in time of the Boltzmann
equation, since its stochastic interpretation is straightfor-
ward. Consider an electron that has position r, and ve-
locity ug at time ¢,. Equations (16) and (12) say that the
position of the electron changes during a small time step
At by uyAt. The velocity changes by two mechanisms.
First, u, changes deterministically according to Eq. (12).
Second, it may or may not undergo a collision during the
time step. The probability that the electron does not un-
dergo a collision is

PV=1-3 7§, 21)

hj

in which case the velocity changes just according to Eq.
(12) (free flight). However, the probability that the elec-
tron undergoes a collision of type i with a particle of type
Jj is given by Eq. (17), in which case the scattering angle y
is picked from P%(x|u,), the azimuthal angle ¢ picked
from the distribution 7?(¢), and the speed undergoes a
change from u, to uy(1—(1—cosy)m /m;), if process i is
elastic, and to ( u3—28,~j /m)'/? (where the effect of
momentum transfer has been neglected as negligible
when compared to ¢;), if i corresponds to an inelastic
process according to ??j(u|uo). Since we choose the z
axis to point towards (as yet unknown) u, by finding y
and @ we find the angle between u and u,. Since u, is
known, we then know the orientation of u.

The proposed algorithm is to simulate an ensemble of
electrons whose stochastic trajectory is generated by the
above probabilities and a pseudorandom number genera-
tor. Desired averages, such as electron density, energy
distribution, or velocity distribution of electrons, can be
calculated from the ensemble. In most cases the initial
distribution of the electrons is a Maxwellian distribution
with an average energy of 1 eV.

Each time step requires at least one random number,
and possibly three, for each electron in the ensemble.
The first random number determines which type of col-
lision occurs (or if none at all occurs). If no collision
occurs during that time step, no other random numbers
are drawn. If a collision does occur, the second random
number determines the new velocity direction y from the
scattering cross section and the third number picks out
the new velocity direction ¢ uniformly between 0 and 2.
The magnitude of the new velocity is determined deter-
ministically, Eq. (18), from the type of collision. The
method described is referred to as the dynamic Monte
Carlo simulation.
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B. The DMCS algorithm code interpretation

The first step in applying the above algorithm is to find
the time step as it is dictated by the derivation of the
DMCS technique. From the derivation of the technique
the time step should be such that the second-order terms
in At, in the Taylor expansion in Eq. (13), are not
significant. A first approach though in deciding the time
step is to make sure that PVC is always positive over the
energy range of interest. Note that a small At increases
PNC and a large At decreases PVC (which means that the
electron is more likely to suffer a collision at the end of a
time step). Once the time step has been determined we
compute the probability for each collision according to
the prescription below. The electron velocity is then up-
dated depending on the type of collision selected. There-
after, the particles subject to the stochastic simulation are
advanced in time by integrating Newton’s equations of
motion Eq. (12).

For all e-n interactions the collision probabilities de-
pend on the local collision partner density and the speed
of the actual electron. Note that all probabilities are au-
tomatically normalized so that

P+ 3 Pi=1, (22)
ij
where the sum is over all possible particles j and all possi-
ble collisions i. A random number ¥, chosen from a uni-
form distribution [0,1], determines whether the electron
continues its trajectory unhindered

Yy <pNC (23)

or that the electron suffers a collision k, of a specific type
i with particle j

k—1 k
P+ 3 PE<Y=<PV+ ¥ PC, (24)

m=1 m=1

where the probabilities are now sorted in a vector form
rather than a matrix form (each value for m corresponds
to a unique pair i,j). Once the collision type has been
determined, the velocity of the electrons is then updated
based on the new speed dictated by Eq. (18), the scatter-
ing angle given by Eq. (19), and the azimuthal angle
given by Eq. (20).

To account for production and loss mechanisms of
electrons (e.g., ionization and attachment) that are not
accounted for in the Boltzmann equation, simulated elec-
trons are removed or added to the DMCS. However, for
convenience we wish to maintain the number of simulat-
ed particles within a specified range (100-300). When
the number of electrons increases beyond the maximum
number of electrons that the DMCS is specified to han-
dle, a number of electrons are rejected from the ensemble.
The electrons removed are chosen at random so that the
ensemble features are not perturbed. When the number
of electrons decreases beyond the minimum required
number for good statistics a number of new electrons are
introduced into the ensemble with velocities dictated by
the ensemble electron velocity distribution function
(EVDF), which is continuously updated. However, the
latter situation is rather rare since we are normally in-
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terested in electron-swarm parameters under discharge
conditions that a glow-discharge can be sustained. Thus
the simulated electrons usually increase beyond the max-
imum number of electrons set to be handled by the
DMCS. In this sense, the computationally expensive task
of computing the EVDF usually can be avoided.

As the electron properties are evolved forward in time,
the velocity components are recorded at prespecified
phases of the simulation and statistics are accumulated.
In order to obtain interesting quantities (e.g., average en-
ergy, rate coefficients, and drift velocity) we could sample
the EEDF (or EVDF) and then integrate the appropriate
quantity over the distribution. For typical needs, the dis-
tribution function contains an abundance of information,
which we may not need, and since the EEDF (moreover
the EVDF) requires a large number of simulated particles
for good resolution, a different route is followed. As elec-
trons are traced in phase space, only the quantity of in-
terest is recorded. The integral over the distribution
function (e.g., drift velocity) is calculated by averaging
over the finite ensemble as shown in the following exam-
ple.

III. EXAMPLE APPLICATION: HELIUM DISCHARGE

The Boltzmann equation is solved from the electrons in
a helium discharge by using the DMCS technique
presented in the preceding section. The external force
applied on the electrons is provided by a uniform dc or rf
electric field aligned in the z direction. The EVDF is fol-
lowed in three velocity dimensions, even though the
problem configuration allows an axial symmetry around
the z axis. No space dependence of the EVDF is con-
sidered in this work, owing to the uniform electric field.
However, the inclusion of the space coordinates can be
handled in a straightforward manner. No differential
scattering cross sections o ,-j(u, X) were available so the in-
tegral cross sections [11] &,;(u) were used. The integral
cross sections are defined as the integrals of the corre-
sponding differential cross sections over the solid angle

a,.j(u)=2wfo”a,.j(u,x)sinx dx . (25)

Nevertheless, the lack of differential cross sections allows
us to arbitrarily select a distribution 7% (x /u,) provided
that it is normalized over the scattering angle. The
scattering-angle distribution may vary from a purely uni-
form distribution (isotropic scattering) to a distribution
that allows for a single scattering angle (e.g., purely for-
ward scattering). In this study o;;(u,x)/8 ;(u) has been
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approximated, for all electron-impact processes, by the
following distribution function [14] at various values of
speeds u (e=mu?/2) and scattering angles y:

U[j(u,x) _ €

G;(u) 4

(26)

1+£sin222(— In(1+¢)

The scattering angle  is found by setting the cumulative
distribution function of Eq. (26), equal to a uniform ran-
dom number, and then solving for y [1]. For this specific
distribution function Eq. (26) the cumulative distribution
function is invertible and the inverse method may be used
[26]. This distribution Eq. (26) predicts an approximately
isotropic scattering at low energies, whereas high ener-
gies render the distribution anisotropic. In this sense Eq.
(26) can capture the main features of e-n scattering.

The cross sections for the He discharge were provided
by Surendra [19] and shown in Table I. The electron col-
lisions considered in this simulation were momentum
transfer, excitation, and ionization (i =3) and the col-
lision partners are neutral He atoms (j =1). The thresh-
old energies for both excitation and ionization collision
are relatively high, with €, =19.8 and 24.5 eV, respective-
ly. The EEDF f (¢) denotes the probability that an elec-
tron has an energy between € and £ +de. In the follow-
ing figures the EEDF is normalized as

fom\/;,f(e)de=l : 27)

A semilogarithmic plot of the EEDF f (¢) against the en-
ergy € is a straight line for a Maxwellian distribution.
Hence the EEDF computed in this way can readily be
compared to the Maxwellian distribution.

The mean electron energy, as well as the rate
coefficients, is computed as the appropriate ensemble
averages

1 .
(- _Fe_f(...)f(r,u,t)du. (28)

Hence we can compute the mean electron energy and the
rate coefficients by performing the integral Eq. (28) over
(e):=(mu?/2) and k;;:=(&;(u)u ), respectively. This
approach requires the solution of the time-evolution
equation for the distribution function, which in general
constitutes a computationally expensive task. However,
since our stochastic simulation uses the same underlying
stochastic process implied by the time-evolution equation
to generate an ensemble of realizations, we can use this
ensemble to estimate averages

TABLE I. Most significant processes taking place in the helium discharge.

Electron—-neutral species

Cross section &

Energy loss ¢

collision (cm?) eV)
elastic 6=8.5X10"1/(e+10)"! 0.0
excitation &=0 0<e=<19.8
He+e—He*+e 6=2.08X10"%(e—19.8) 19.8<¢<27.0 19.8
8=3.4X10""/(e+200) 27.0<¢g
ionization =0 0<e=<24.5 24.5
He+e—He™ +2e 8=1X10""(e—24.5)/{(e+50)(e+300)"%} 24.5<¢
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FIG. 1. Steady-state electron energy distribution function for
He dc fields of E /N =10, 50, 100, 150, and 200 Td.

1

(F(u))ENe

S F(u;), (29)

where u; is the velocity of the ith electron in our ensem-
ble and WV, is the total number of electrons in the ensem-
ble.

The swarm parameters were calculated for gas number
density equal to N =3.22X10'® cm™3, which corre-
sponds to 1 Torr pressure and 300 K gas temperature.
Each run required less than 1 min on a Hewlett-Packard
735 workstation. The estimated statistical error for the
mean electron energy is +0.2% and the electron-impact
rate coefficient is *+1%. No significant time-
discretization error was found by halving the time step.

The EEDF for a dc field with different E /N values is
shown in Fig. 1. Clearly, as the applied dc field increases,
the EEDF shifts towards higher energies. The tail of the
EEDF at E/N=10Td (1 Td=10""" V cm?) falls off rap-
idly since the highly energetic electrons are depleted due

5x108

u, (cmy/s)

-5x108
-5x108 0

ux (cm/s)

FIG. 2. Contour plot of the steady-state electron velocity dis-

tribution function for the He dc field of E /N =150 Td. Values
shown are multiplied by 4.17 X 10'3,
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FIG. 3. Steady-state values of momentum k,,, ionization k;,
excitation k.,, rate coefficients, and mean electron energy (&)
as a function of dc E/N in He. Results by using the two-term
approximation of the EVDF (Morgan and Penetrante [4]) are
shown as points.

to the inelastic collisions. However, as E /N increases,
the EEDF tends to become more Maxwellian-like by rais-
ing the tail of the EEDF. The EVDF for a dc field of 200
Td is shown in Fig. 2. Since the electric field is aligned in
the z direction, u, is isotropically distributed between
positive and negative values. However, the u, velocity
component is elongated towards negative values since the
electric field points in the positive z direction.

Figure 3 shows the mean electron energy (¢ ), momen-
tum k,,, excitation k., and ionization k; rate coefficient
as a function of the applied dc field E /N. Both excita-
tion and ionization rate coefficients increase as E /N in-
creases. Above E/N =150 Td the ionization rate be-
comes more significant even though the ionization
threshold energy is greater than the excitation energy.
The momentum transfer rate coefficient decreases slightly
as E /N increases. Results by using the two-term spheri-
cal harmonic expansion [4] of the EVDF are shown as
points. Good agreement occurs since the elastic collision
cross section is much higher than the inelastic collision
cross sections. This induces small perturbations to the
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FIG. 4. Harmonic steady-state electron energy distribution
function for different fractions of the rf cycle for the He rf field
of E/N =100 Td and frequency 13.56 MHz.
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FIG. 5. Distribution function of the z component of the elec-
tron velocity for different fractions of the rf cycle for the He rf
field of E /N =100 Td and frequency 13.56 MHz.

isotropic part of the EVDF rendering the two-term ap-
proximation valid. However, at high E /N ratios, where
ionization dominates over the other inelastic processes,
significant differences occur. This agreement verifies that
the stochastic simulation indeed solves the Boltzmann
equation.

The time-dependent EEDF for a sinusoidally varying
field with peak E /N =100 Td and a frequency «w=13.56
MHz is shown in Fig. 4 for different fractions of the rf cy-
cle. The EEDF modulates rather strongly within the rf
cycle and with twice the applied frequency. The EVDF
represented by the z component of the electron velocity is
shown in Fig. 5 as a function of the fraction of the rf cy-
cle. The EVDF has been normalized at each time level of
the cycle. Clearly, the EVDF contracts and expands de-
pending on the temporal electric field. When the electric
field is at its positive peak (7=wt =0.25) the EVDF ex-
pands and is elongated toward negative velocities,
whereas when the electric field is at its negative peak
(r=wt =0.75) the EVDF is elongated toward positive
velocities. For the same rf conditions the swarm parame-
ters are plotted against the fraction of the rf period in
Fig. 6. The momentum rate coefficient does not modu-
late strongly; however, both the excitation and the ioniza-
tion rate coefficient modulate significantly due to the
mean electron energy variation within the cycle.

IV. CONCLUDING REMARKS

A method, referred to as the DMCS technique, has
been developed for the solution of the Boltzmann equa-
tion describing partially ionized gases, via the generation
of realizations of the underlying stochastic process. In

ergy {e) as a function of the fraction of the rf cycle for the He
rf field of E /N =100 Td and frequency 13.56 MHz.

contrast to the DSMC and the NCMC methods, DMCS
does not require the assumption of the free-flight-time
distribution. Since the free-flight-time distribution is not
an input, the stochastic quantities evolve in time step by
step, with a time step selected in such a way as to ensure
accuracy in the results, as dictated by the derivation of
the DMCS algorithm. Usually, in the DSMC and
NCMC methods, the fastest electrons must freeze in real
time until the slowest electrons can catch up, in order to
record statistics. A constant time step renders the pro-
cess of collecting statistics with the DMCS straightfor-
ward, since there is no need to keep track of the time lev-
el in which each electron is located. In the DMCS tech-
nique all electrons are at the same point in real time.
Most commonly, in the DSMC and the NCMC methods
a collision occurs when a random number is less than a
computed quantity. Then, if a collision does take place,
an additional random number determines the type of the
collision. In the DMCS method a single random number
determines whether the electron continues its trajectory
unhindered or if the electron suffers a collision of a
specific type. Although we studied a helium discharge
under the influence of a homogeneous electric field, the
DMCS technique can easily be extended to handle more
complex systems under the influence of inhomogeneous
electromagnetic fields to describe spatially varying plas-
ma behavior.
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